首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33214篇
  免费   1659篇
  国内免费   1726篇
电工技术   1976篇
技术理论   5篇
综合类   2331篇
化学工业   1292篇
金属工艺   1217篇
机械仪表   4212篇
建筑科学   2201篇
矿业工程   718篇
能源动力   1241篇
轻工业   717篇
水利工程   601篇
石油天然气   681篇
武器工业   308篇
无线电   2947篇
一般工业技术   1195篇
冶金工业   757篇
原子能技术   490篇
自动化技术   13710篇
  2024年   13篇
  2023年   126篇
  2022年   275篇
  2021年   383篇
  2020年   383篇
  2019年   279篇
  2018年   336篇
  2017年   413篇
  2016年   545篇
  2015年   731篇
  2014年   1676篇
  2013年   1550篇
  2012年   2069篇
  2011年   2724篇
  2010年   1958篇
  2009年   1777篇
  2008年   1915篇
  2007年   2487篇
  2006年   2461篇
  2005年   2327篇
  2004年   1903篇
  2003年   1872篇
  2002年   1632篇
  2001年   1148篇
  2000年   908篇
  1999年   915篇
  1998年   729篇
  1997年   574篇
  1996年   491篇
  1995年   420篇
  1994年   316篇
  1993年   265篇
  1992年   205篇
  1991年   163篇
  1990年   111篇
  1989年   114篇
  1988年   91篇
  1987年   48篇
  1986年   29篇
  1985年   44篇
  1984年   43篇
  1983年   32篇
  1982年   27篇
  1981年   22篇
  1980年   11篇
  1979年   15篇
  1978年   18篇
  1977年   13篇
  1975年   3篇
  1974年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
2.
3.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
4.
朱凤山 《福建电脑》2022,38(1):40-43
为简化不同软件开发技术处理界面中组件关系的算法,增强使用数学模型解决软件开发中算法设计的能力,全面分析和总结直角坐标系在界面设计中的应用十分必要。通过对不同开发技术处理界面设计的分析,界面中组件位置关系实质上都可以转化为坐标关系的计算。本文列举了直角坐标系在Python编程、Android编程、Java编程和Unity编程中的应用,以期给相应的算法设计提供借鉴思路。  相似文献   
5.
Quantitative Risk Assessment (QRA) supports the development of risk-informed safety codes and standards which are employed to enable the safe deployment of hydrogen technologies essential to decarbonize the transportation sector. System reliability data is a necessary input for rigorous QRA. The lack of reliability data for bulk liquid hydrogen (LH2) storage systems located on site at fueling stations limits the use of QRAs. In turn, this hinders the ability to develop the necessary safety codes and standards that enable worldwide deployment of these stations. Through a QRA-based analysis of a LH2 storage system, this work focuses on identifying relevant scenario and probability data currently available and ascertaining future data collection requirements regarding risks specific to liquid hydrogen releases. The work developed consists of the analysis of a general bulk LH2 storage system design located at a hydrogen fueling station. Failure Mode and Effect Analysis (FMEA) and traditional QRA modeling tools such as Event Sequence Diagrams (ESD) and Fault Tree Analysis (FTA) are employed to identify, rank, and model risk scenarios related to the release of LH2. Based on this analysis, scenario and reliability data needs to add LH2-related components to QRA are identified with the purpose of improving the future safety and risk assessment of these systems.  相似文献   
6.
A new, experimental method based on air flow rate rather than current is presented to optimize operating parameters for the stacks and systems of proton exchange membrane fuel cells (PEMFCs) for maximizing their net power. This approach is illustrated for a commercial 18 kW PEMFC module. The impact of contamination pressure drop across the cathode air filter is also investigated on the compressor behavior. It is further shown that a 4V reduction in the compressor voltage reduces its power consumption by 9.1%. Using the 3D graphs of the power-pressure-flow data, it is found that the stack pressure of 180 kPaa is superior to the higher tested pressures as it enhances the net power by 7.0 and 13.7% at different conditions. Application of the present study will lead to the development of PEMFCs with higher power output by optimizing stack pressure, stoichiometry and air flow to properly deliver the system design specifications.  相似文献   
7.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e. allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens. The present study evaluates the feasibility of microbially induced calcium carbonate precipitation (MICP) technique to mitigate wind-induced erosion of calcareous desert sand (Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36 °C to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina (S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing (in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure (including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope (SEM), and energy-dispersive X-ray spectroscope (EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in 15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust, bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.  相似文献   
8.
Many places experience extreme temperatures below −30 °C, which is a great challenge for the fuel cell vehicle (FCV). The aim of this study is to optimize the strategy to achieve rapid cold start-up of the 30-cell stack at different temperature conditions. The test shows that the stack rapidly starts within 30 s at an ambient temperature of −20 °C. Turning on the coolant at −25 °C show stability of the cell voltage at both ends due to the end-plate heating, however, voltage of intermediate cells fluctuates sharply, and successful start-up is completed after 60 s. The cold start strategy changes to load-voltage cooperative control mode when the ambient temperature reduced to −30 °C, the voltage of multiple cells in the middle of the stack fluctuate more drastic, and start-up takes 113 s. The performance and consistency of the stack did not decay after 20 cold start-up experiments, which indicates that our control strategies effectively avoided irreversible damage to the stack caused by freeze-thaw process.  相似文献   
9.
加氢反应器是加氢装置的重要组成部分,反应器头盖因工况复杂,导致密封难度较大,密封不严,会导致整个装置不能正常运转。为此,就其头盖拆装及密封问题进行探讨,提出有效的质量控制措施。  相似文献   
10.
In this paper, a novel compound fault-tolerant attitude control (FTC) scheme is proposed for reentry hypersonic vehicles with aerodynamic surfaces and reaction control systems (RCS) in the presence of parameter uncertainties, external disturbances and aerodynamic surfaces faults. Aerodynamic surfaces work as the primary actuators and RCS serve as auxiliary actuators. When aerodynamic surfaces cannot provide the required attitude control torque due to low dynamic pressure or faults, RCS are activated to assist aerodynamic surfaces to generate the residual torque. A nonlinear disturbance observer-based sliding mode controller is designed to calculate the required attitude control torque which can handle the parametric uncertainties and external disturbances together. The quadratic programming method is applied to obtain the optimal aerodynamic surfaces deflections from the required control torque. An innovative fuzzy rule-based decision-making system is design to solve the RCS control allocation problem, which is conceptually easy to understand and computationally efficiently compared with existing approaches. Based on quantized control theory, the closed-loop control system stability is rigorously analyzed. Simulation results are given to demonstrate the effectiveness and efficiency of developed FTC scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号